DEC14-14 Low Cost RF Power Meter

Client- PowerFilm,Inc

Adviser- Prof. Nathan Neihart

Team

Boyang Hu, Cong Han, Xiaoshuo Li, Silu Feng, Yijia Huang, Yusi Xie

Requirement

Functional Requirement:

$>$ RF pickup
$>$ Capable of measuring forward and reflected power
$>$ Capable of measuring pure sinusoidal RF input
$>$ Capable of measuring pulse modulated sinusoidal RF input with 50% duty cycle
$>$ Power range: 100-250W
$>$ Frequency level: 13.5 MHz and 40 Mhz
$>$ Output voltage within 5 V
$>$ AC attenuation up to 60 dB
$>$ Be able to connect to RF transmission line using Type N connector
$>$ Total error within 10%

Non-functional requirement:

Low Cost ($<\$ 100$)
$>$ A plan for power measurement up to 1200 W
> Safe and easy to use

Market Survey

\$2051

$\$ 714.95$

Block Diagram
\& project schedule

Directional Coupler

Directional coupler block diagram

Directional Coupler

Tandem Directional Coupler

Directional Coupler with Forward Wave

transmission line

Directional Coupler with Reflected Wave

Directional Coupler

How to test (coupling factor)

Coupling Factor (13.5 MHZ)

Frequency			Forward	Reflected	Coupling		\triangle Quantiles		\triangle Summary Statistics
(MHz)	Power(Forward)	Power(Reflected)	voltage(Vf pk-pk)	Voltage(Vf pk-pk)	Factor		100.0\% maximum	30.1326	Mean 29.893339
13.5	20.1	0.2	2.98	1.08	29.56823521	8.815850172	99.5\%	30.1326 301326	Std Dev $\quad 0.1710843$
13.5	30.5	0.3	3.5	1.32	29.98223742	8.469882263	90.0\%	30.1326 30.1326	Upper 95\% Mean 30.0363669
13.5	39.9	0.5	3.98	1.4	30.03266743	9.075100728	75.0\% quartile	30.0201	Lower 95\% Mean 29.750309
13.5	49.9	0.6	4.4	1.64	30.13255184	8.572176569	50.0\% median	29.8917	N
13.5	59.9	0.7	5	1.76	29.81546805	9.06914673	25.0\% 10.0% quartile	29.8196	
13.5	69.8	0.8	5.32	1.96	29.94092149	8.673111219	2.5\%	29.5682	
13.5	79.8	1	5.76	2	29.83217916	9.187849755	0.5\%	29.5682	Error: 0.35\%
13.5	90.3	1.1	6.12	2.2	29.84244897	8.886574826	0.0\% minimum	29.5682	

Coupling Factor (40 MHz)

Frequency (MHz)	Input Power(Forward	Input Power(Reflected)	Forward Voltage(Vf pk-pk)	Reflected Voltage(Vf pk-pk)	Power ratio	Coupling Factor	${ }^{\triangle}$ Quantiles			\triangle Summary Statistics	
							100.0\%	maximum	29.2715	Mean	29.143698
40	19.2	0	3.12	1.68	788.9546351	28.97052303	99.5\%		29.2715	Std Dev	0.1130046
40	29	0	3.76	1.92	820.5070167	29.14082299	97.5\%		29.2715	Std Err Mean	0.03999531
40	38.8	0	4.32	2.24	831.6186557	29.19924223	75.0\%	quartile	29.2313	Upper 95\%Mean	29.238173 29.049224
40	48.6	0	4.88	2.32	816.3128191	29.11856617	50.0\%	median	29.17	N	8
40	58.4	0	5.28	2.64	837.9247016	29.23204993	10.0\%	quartile	29.0206 28.9705		
40	68.2	0	5.68	2.88	845.5663559	29.27147695	2.5\%		28.9705	Error: 2.85\%	
40	78.1	0	6.28	2.88	792.1213842	28.98791738	0.5\%	minimum	28.9705 28.9705		
40	87.9	0	6.48	3.12	837.3342478	29.22898855					

Coupling Factor $=29.054654+0.0016636$ *Input Power

Directivity, Isolation \& Coupling Factor

Directivity means power level difference between the forward port and reflected port.
Isolation means power level difference between input port and reflected port. It also related to directivity.

The relation of isolation, coupling factor, and directivity:
Isolation (dB) =Coupling Factor (dB) + Directivity (dB)
Our result:
\triangle Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob $>\|\boldsymbol{t}\|$
Intercept	$-1.649 \mathrm{e}-7$	$3.585 \mathrm{e}-7$	-0.46	0.6649
Coupling facotr	1	$1.108 \mathrm{e}-8$	$9 \mathrm{e}+7$	$<.0001^{*}$
Directivity	1	$7.329 \mathrm{e}-9$	$1.4 \mathrm{e}+8$	$<.0001^{*}$

Predict Isolation $=-1.649 *+1 *$ Coupling Factor $+1 *$ Directivity

Challenge

$>$ Test plan
$>$ Equipment's limit
$>$ Soldering issue
$>$ Toroid direction
$>$ Reflected voltage not ideal
$>$ Organize the components into the box

Detection Device

Diode Schematics

Low-pass Filter

Scaling Amplifier

Pulse Modulated Sine Wave

Power(w)	Vout(v)	Vin(v)	Gain(v/v)	Feedback Resistance(k) $)$
50	7.071	0.3536	20	5.3
100	7.071	0.5	14.142	7.6
200	7.071	0.707	10	11.1
350	7.071	0.9354	7.559	15.2
500	7.071	1.118	6.325	18.8
1000	7.071	1.581	4.472	28.8

Pure Sine Input

Power(w)	Vout(v)	Vin(v)	Gain(v/v)	Feedback Resistance(k $\Omega)$
50	7.071	0.707	10	11.1
100	7.071	1	7.071	16.5
200	7.071	1.414	5	25
350	7.071	1.871	3.78	36
500	7.071	2.236	3.162	46.2
1000	7.071	3.162	2.236	81

Multiplier

Regulator

Simulation Example

Input Power Range (after the directional coupler) : 0.2 W to 0.25 W

PCB Board

Test Result Out Of Detection Device

Inputpower (W)	OutputPower (W)
0.03	29.6
0.035	34.8
0.04	40
0.045	45.2
0.05	50.5
0.055	53.6
0.06	58.8
0.07	69
0.08	79.6
0.09	90
0.1	100.4
0.12	118.4
0.14	138.8
0.15	149.2
0.16	159.6
0.18	180.4
0.2	200.8
0.21	204.4
0.22	214.2
0.23	224
0.24	233.8
0.25	243.6

Challenge

$>$ Transient simulation takes long time to run
$>$ Unable to precisely measure reflected power
$>$ Components selection (e.g. various package models)
$>$ PCB layout manual routing
$>$ Lack of soldering experience

Overall Test

Test Video

https://www.youtube.com/watch?v=DLEVDW ndfo
All voltage unit is Volts, all power unit is Watts.
Eventually, the equation derived to a power in terms of voltage is:
Pout $=($ Vout $/ 5) *$ Pmax_in_scale_range,
The example in our video shows when input power $=80.1 \mathrm{~W}$,
The output voltage $=3.99 \mathrm{~V}$
The output power $=(3.99 / 5) * 100=79.8 \mathrm{~W}$
Error $=(80-79.8) / 80 * 100=0.25 \%$

Cost

Part Description:	Quantity
Toroid	2
Wire Gauge	50 feet
Enclosure	1
Transmission Line	1 feet
Resistor	32
Trimmer Resistor	4
220pF capacitor	1
4700pF capacitor	2
0.1 uF capacitor	8
luF capacitor	2
100uH inductor	1
HSMS-282K diode	1
LMC6492 amplifier	2
AD633 multiplier	1
LM317 regulator	1
LM337 regulator	1
BNC connector	2
Rotary switch	1
AC to AC adapter	1
Barrel connector	1
Pin connector	1
PCB board	1
Total:	

Price/100Units (\$)	Total Price (\$)
1.2	2.4
0.159	7.95
8.71	8.71
2	2
0.007	0.224
1.64	6.56
0.073	0.073
0.248	0.496
0.082	0.656
0.081	0.162
0.121	0.121
0.417	0.417
1.42	2.84
4.95	
0.26	4.95
0.786	0.26
2.1	0.786
5.27	4.2
8.3	5.27
0.3162	89427
30	8.3
	0.3162
	0.09427
	30
$\mathbf{8 6}$	

Question?

Thank You!

